Archive for the tag 'Kometen'

AG020 Kometenbilder und offene Forschung

Mai 19th, 2015

Offene Forschung? (Bild: ESA)

Offene Forschung? (Bild: ESA)

Seit über acht Monaten kreist Rosetta um den Kometen 67P/Tschurjumow-Gerasimenko. An Bord befinden sich zehn Instrumente, unter denen eines hervorsticht: Die Kamera OSIRIS füllt fast ein Viertel der wissenschaftlichen Nutzlast aus. Die hochaufgelösten Bilder von OSIRIS gehören wohl zu den öffentlich gefragtesten Daten von Rosetta.

Ich habe darüber mit Holger Sierks gesprochen, dem Kamerachef von OSIRIS am Max-Planck-Institut für Sonnensystemforschung in Göttingen. Das OSIRIS-Team umfasst heute 83 Personen, die europaweit über neun Institute in vielen Ländern verteilt sind. In der ersten Hälfte sprechen wir über die Kamera, wie sie funktioniert, und wie aufwendig es ist, anhand der Bilder zu forschen. Im zweiten Teil sprechen wir über die vielen tausend Bilder, die OSIRIS bis heute übermittelt hat und die bisher zu 99% beim Max-Planck-Institut liegen. Zuletzt geht es um offene Forschung – und die Schwierigkeiten, die sich dabei ergeben könnten.

Befangenheitshinweis: Der Autor dieses Podcasts war im Juli 2014 Mitautor eines offenen Briefs an Holger Sierks und andere Wissenschaftler hinter der Rosetta-Mission. Darin wurde gefordert, mehr Bilder der Mission sofort öffentlich freizugeben.

Audio


Links

AG016 Ozeanbildung ohne Kometen

Dezember 11th, 2014

Fontänen von Komet 67P (CC BY-SA 3.0 IGO ESA / Rosetta / NAVCAM / Gertrud Felber)

Fontänen von Komet 67P (CC BY-SA 3.0 IGO ESA / Rosetta / NAVCAM / Gertrud Felber)

Vier Monate umkreist Rosetta nun Tschurjumow-Gerasimenko. Die erste Kometenlandung ist Geschichte, der Lander Philae eingeschlafen. Die Muttersonde kreist aber weiter – und wird das wohl noch über ein Jahr lang tun. Nun gibt es erste handfeste Ergebnisse von ihr: Das Massenspektrometer ROSINA an Bord von Rosetta hat so etwas wie den Fingerabdruck des Wassers gemessen. Das Resultat scheint überraschend: Das Wasser der Erde kam kaum von einem Kometen wie Tschuri, vermutlich spielten Kometen als Wasserlieferanten überhaupt keine Rolle.

Um die neuen Daten zu verstehen, habe ich mit Kathrin Altwegg gesprochen. Sie ist Professorin in der Abteilung für Weltraumforschung und Planetologie der Universität Bern. Und sie ist verantwortlich für ROSINA: Das Rosetta Orbiter Spectrometer for Ion and Neutral Analysis. Es besteht aus zwei Massenspektrometern und einem Gasdrucksensor.

Audio


Bilder

Kathrin Altwegg (Bild: CC-BY 2.0 Georg Eberle / TedX Bern)

Kathrin Altwegg (Bild: CC-BY 2.0 Georg Eberle / TedX Bern)

D/H-Messwerte aus dem Sonnensystem

Unter Kometen wurden verschiedene Werte von Deuterium über Wasserstoff (D/H) gemessen. Komet 67P Tschuri sticht aber hervor. (Bild: ESA, Daten aus Altwegg et al. 2014)

Links

AG015 Die erste Kometenlandung

November 19th, 2014

Philae nach dem Abdocken von Rosetta (Bild: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA)

Philae nach dem Abdocken von Rosetta (Bild: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA)

Am 12. November 2014 landete erstmals in der Geschichte eine Raumsonde auf einem Kometen: Philae. Nach zwei ungewollten Hüpfern stand Philae – und begann wissenschaftliche Daten der  unbekannten Kometenwelt zu sammeln. Leider arbeitete die Sonde nur 56 Stunden – danach war die Hauptbatterie an Bord erschöpft.

(Bild: Fred Goesmann)

(Bild: Fred Goesmann)

Sechs Tage später traf ich mich mit Fred Goesmann für ein Interview: Er ist leitender Wissenschaftler für das Instrument COSAC auf Philae (Cometary Sampling and Composition Experiment). Es ist so etwas wie die Nase der Sonde: Sie kann die vielen organischen Verbindungen im Kometenmaterial untersuchen, von denen wir längst noch nicht alle kennen. COSAC ist somit auch eines der komplexesten Instrumente an Bord – samt einem Gaschromatographen und einem Massenspektrometer, wofür zuvor das Material in winzigen Öfchen gekocht werden muss.

Fred Goesmann erzählt, wie er die kurze Missionszeit von Philae erlebte, was er in seinen (längst noch nicht fertig ausgewerteten) Daten erwartet – und ob Philae vielleicht wieder aufwachen könnte.

Audio


Bilder

Abstiegskamera ROLIS: Philae hinterlässt Abdrücke im Staub - den der Lander wohl auch aufwirbelte (Bild: ESA / Rosetta / Philae / ROLIS / DLR; ESA / Rosetta / MPS for OSIRIS-Team MPS / UPD / LAM / IAA / SSO / INTA / UPM / DASP / IDA; Emily Lakdawalla)

Abstiegskamera ROLIS: Philae hinterlässt Abdrücke im Staub – den der Lander wohl auch aufwirbelte (Bild: ESA / Rosetta / Philae / ROLIS / DLR; ESA / Rosetta / MPS for OSIRIS-Team MPS / UPD / LAM / IAA / SSO / INTA / UPM / DASP / IDA; Emily Lakdawalla)

Philae landet - und fliegt weiter (Bild: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA)

Philae landet – und fliegt weiter (Bild: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA)

Philae steht: Auf was er blickt, bleibt unklar. Im Vordergrund: Eines der drei Landebeine. (Bild: ESA/Rosetta/Philae/CIVA)

Philae steht: Auf was er blickt, bleibt unklar. Im Vordergrund: Eines der drei Landebeine. (Bild: ESA/Rosetta/Philae/CIVA)

Links

AG011 Kosmische Chemie

März 31st, 2014

Unser Sonnensystem entstand aus einer protoplanetaren Scheibe: Aus Gas und Staub bildeten sich immer größere Brocken (Bild: gemeinfrei / NASA/JPL-Caltech)

Unser Sonnensystem entstand aus einer protoplanetaren Scheibe: Aus Gas und Staub bildeten sich immer größere Brocken (Bild: gemeinfrei / NASA/JPL-Caltech)

Millionen Objekte bevölkern unser Sonnensystem: von winzigen Asteroiden über mittelgroße Gesteinsplaneten bis zu den gewaltigen Gasriesen. All das ist vor langer Zeit aus einer Urwolke entstanden und diese Einsicht ist schon über 200 Jahre alt. In den letzten Jahrzehnten haben Forscher aber gelernt, aus der Chemie von Meteoriten deutlich mehr herauszulesen. Die Geochemie eröffnet uns einen tiefen Blick in die Geschichte des Sonnensystems – bis zur Entstehung des Lebens.

Mit Mario Trieloff von der Universität Heidelberg wage ich einen Ritt durch die letzten 4,6 Milliarden Jahre, alle Körper des Sonnensystems und die Innereien der Erde. Er ist Professor am Institut für Geowissenschaften und leitet die Forschungsgruppe Geo- und Kosmochemie.

Audio


Links

AG010 Rosettas Komet

Januar 23rd, 2014

Tschurjumov-Gerasimenko

Der Kometenkern von Tschurjumov-Gerasimenko, beobachtet im Oktober 2013 vom Very Large Telescope (CC-BY 3.0 Unported ESO/Colin Snodgrass/MPS)

Rosetta ist ein Novum: Es ist der erste Versuch, eine Raumsonde um einen Kometen kreisen zu lassen, um schließlich einen Lander auf ihm abzusetzen. Rosetta ist auch einer der ersten Versuche Europas, in der Raumfahrt mal alleine etwas ganz Neues zu versuchen.

Was dabei passieren kann: Es passieren unvorhergesehene Dinge. Etwa wird Rosettas Zielkomet 67P/Tschurjumov-Gerasimenko wohl schon etwas früher aktiv als geglaubt. Er pustet also schon eher Gas und Staubpartikel ins All, als Vorstufe zu seinem Schweif.

Das ist eigentlich keine Neuigkeit: Im August 2013 habe ich darüber bereits mit Colin Snodgrass und Hermann Böhnhardt vom Max-Planck-Institut für Sonnensystemforschung in Katlenburg-Lindau gesprochen. Das volle Interview ist aber weiter aktuell – gerade so kurz nach Rosettas beendetem Winterschlaf.

Audio


Links